首页 > 新闻中心 > 科研进展
宁波材料所合成出新颖二维MXene材料
作者:,日期:2017-04-10

  二维材料因其高比表面积,独特的电子结构及物理化学性质而引起人们的广泛关注。作为研究最为广泛的二维材料,石墨烯因其超高的力学强度、优异的电导率及热导率,在电化学储能,透明电极材料,及纳米复合材料等领域展现出广泛的应用前景,但本征的零带隙及单一的化学组成限制了其在场效应晶体管等领域的应用。二元及三元二维材料,如金属氧化物、层状金属硫族化合物,六方氮化硼,层状氢氧化物等体系的研究日益受到关注。二维层状过渡金属碳化物纳米片(MXenes)材料则是近年来发现的一类新型二维材料,由美国Drexel大学Michel Barsoum在此领域做了大量开拓性研究,目前该实验室已相继获得Ti3C2Tz, Ti2CTz, Ta4C3Tz, TiNbCTz, (V0.5,Cr0.5)3C2Tz, Ti3CNTz, Nb2CTzV2CTz, Nb4C3Tz, Mo2TiC2Tz, Mo2Ti2C3Tz, Cr2TiC2Tz, , Mo2CTz, Ti4N3TzMXenes结构。MXenes具有高比表面积、良好的导电性和亲水性,理论预测这类材料具有高弹性模量及高载流子迁移率,在导电材料及功能增强复合材料等方面有良好的应用前景。前期研究发现多种阳离子能够自发地插入到MXenes材料层间,因此在储能领域也有良好的应用前景。如已有的研究报道,Ti3C2TzTi2CTzV2CTzNb2CTz等可作为锂离子电池和超级电容器的电极材料,它们具有较高的比容量(可达410 mAh/g @ 1 C)和体积比电容(可达900F/cm3)以及良好的充放电循环稳定性(Science, 2013, 341, 1502-1505Nature 2014, 516, 78-81)。因此,MXenes被认为极具发展潜力的新一代二维纳米功能材料。 

  正因为此,如何抢先合成出具有丰富d电子结构的过渡金属碳化物材料已成为全世界关注的焦点。目前,MXenes的制备主要是通过HF酸,NH4HF2溶液,LiFHCl混合溶液及低共熔混合盐介质中对A位为AlMAX相材料(为一超过70组员的材料体系)中的Al原子选择性刻蚀而得到。由于过渡金属ZrHf难以形成A位为AlMAX相,因此,截止目前,关于Zr系及Hf 系的MXenes材料仍未见报道。中国科学院宁波材料所特种纤维与核能材料工程实验室采用原位反应放电等离子烧结法(SPS)获得的高纯新型Zr3Al3C5层状碳化物作为前驱体,以HF酸为蚀刻剂,选择性剥离键合较弱、易于水解的Al-C结构单元,首次获得Zr系二维MXenes材料。该工作已发表在国际期刊Angewandte Chemie-International Edition128, 5092-5097, 2016)。 

  相比于Zr系材料,Hf系层状碳化物更难获得单一的物相,通常获得的是Hf3Al3C5Hf3Al4C6Hf2Al4C5三元化合物的混合相,并且由于较强的亚层间界面结合,我们发现直接以三元Hf-Al-C复合相为前驱体难以通过选择性刻蚀法获得Hf系二维材料,所得到的剥离产物主要为立方相HfC。已有的研究表明,基于这些三元相的单相固溶体相对更易获得,并且有助于改善相纯度。此外,考虑到Hf-CAl-C片层间较强的相互作用,为进一步实现有效剥离,对单胞内的Hf-CAl-C亚层间的界面进行调控,以弱化Hf-CAl-C片层间的界面结合非常重要。我们基于固溶法调谐单胞内亚层的思路,在Al位引入少量Si,采用SPS方法合成了新型Hf2[Al(Si)]4C5Hf3[Al(Si)]4C6固溶体材料,以此固溶体为前驱体,以HF酸为蚀刻剂,实现了对Al(Si)-C结构单元的选择性剥离,首次获得了Hf系二维MXenes材料。借助结合能和原子电荷计算分析,阐明了Si掺杂促进氢氟酸剥离过程的微观机制,由于SiAl多一个价电子,掺杂替代Al原子之后,能有效减弱Hf原子层和剥离的片层Al(Si)4C4之间的界面结合,对应结合能的数值从8.60 eV直接降低到4.05 eV,因而Si的引入实现了对单胞内HfCAl(Si)-C片层界面的有效调谐,显著弱化了界面结合,进而实现了剥离。Hf系新颖二维碳化物材料在储能、吸波和光电器件上有着潜在的应用。该实验室发现其具有优良的电化学循环储能特性,在锂电池和钠电池测试中在电流密度为200 mAg-1 循环200次后分别得到体积比容量为1567 mAh cm-3 and 504 mAh cm-3. 高体积比容量材料有望应用于发可应用于空间飞行器、移动装备等小型化供能系统中。该新型HfMXene二维材料工作近期已经被国际期刊《ACS Nano》(DOI: 10.1021/acsnano.7b00030)接收发表 

  另外,该实验室与香港城市大学支春义教授合作,利用常规水热处理方法获得了量子点结构的Ti3C2MXene材料。该量子点材料具有很好的荧光特性和生物相容性,有望在无稀土发光显示材料和生物标记及光热治疗等领域得到广泛应用。该工作也将在2017年的《Advanced Materials》(DOI: 10.1002/adma.201604847)期刊上出版。 

  目前国际上MXene材料研究方兴未艾,正逐步成为继石墨烯、二硫化钼、黑鳞等二维材料之后新的研究热点。中国科学家在Zr系和Hf系对应MXene材料合成上的突破将有力扩展人们对于二维材料认识的视野,也对于纳米能源器件和光电器件研究提供全新的素材。 

  以上工作得到国家自然科学基金委(2167119511604346515023102157714491426304)和中科院核能材料创新团队的支持。
  

  HfMXene材料合成示意图和原子力显微镜形貌图。 

  目前元素周期表过渡族金属区域业已合成出对应的MXene材料,其中Zr系和Hf系由中国科学院合成。 

 

  (纳米事业部 周洁 查显弧)